Update on:

Improved Properties of Nanocomposites for Flywheel Applications

<u>Timothy J. Boyle</u>, Mathias C. Celina, Nelson S. Bell, Benjamin J. Anderson

Sandia National Laboratories Advanced Materials Laboratory

1001 University Boulevard SE Albuquerque, New Mexico 87106 (505)272-7625 (505)272-7336 tjboyle@Sandia.gov

Improved materials required for next generation of flywheels to meet future needs.

A 20 MW flywheel energy storage resource accurately following a signal

Problem:

- Small changes in the AC grid necessitates rapid and exact changes for energy leveling.
- problem exacerbated upon introduction of alternative energies (i.e., solar, wind, etc.).

Flywheels:

- clean, rapid, and efficient method for energy leveling.
- 8 16,000 rpm (Mach 2) = 25 kWh
- rugged, reliable complex instruments:
 rim composed of 3 components: carbon, glass, glue (resin)

Approach:

- obtain more extractable energy by spinning flywheels faster
- to meet the new demands, improved materials necessary
- weak link studied in this project:
 - Rim: transverse failure or 'hula-hooping' noted
 - focused on using nanocomposite materials

All flywheels have similar issues – the 'need for speed' - kills!

Goal: to explore nanocomposites as the rim material to improve flywheel performance.

Low load levels of nanoparticle fillers have led to dramatic property changes

Loading (wt %): 4 Al₂Si₂O₅(OH)₄: 23% storage, 113% flexural strength,¹

 Al_2O_3 : 75% tensile strength,²

2 SiO₂: 3% hardness, 57% impact, 65% flex, 88%, tensile strength,³

2 ZrP: 52% Youngs Modulus, 14% tensile strength, 6% fracture toughness,⁴

0.4% CNT-2% ZrP: 41% Youngs Modulus, 55% tensile strength.⁵

Energy is stored in the rotor as kinetic energy, or more specifically, rotational energy:

$$E_k = \frac{1}{2} \cdot I \cdot \omega$$

 ω = angular velocity, I = moment of inertia of the mass about the center of rotation

The amount of energy that can be stored is dependent on:

$$s_t = \rho \cdot r^2 \cdot \omega^2$$

 s_t = tensile stress on the rim, ρ = density, r is the radius, ω is the angular velocity of the cylinder.

olym Sci B: Polymer em Mater (2010)

Small % changes in the flywheel spin speed leads to magnified energy storage

16,000 rpm \longrightarrow 20,000 rpm 25 kWh \longrightarrow 39 kWh of extractable energy

Overall Objectives: Approach based on defining 'state-of-the-art' system and elucidating nanoparticle filler effects

• Incorporation of suggested nanomaterials and/or resins will represent verification of our approach

Test 'coupons' reveal a good model system in-place:

C-fiber/matrix interface weak link

3 components of rim:

- i. carbon-fiber,
- ii. glass fiber,
- iii. Resin

Intrinsic shear strength (psi)

0000

4t

7

(a) **Standard**

(a)

- **Epoxy** anhydride
- **Epoxy anhydride + catalyst**
- **Epoxy** amine

Filament hoop wound glass- and carbon-fiber tubes*

Glass Fiber Test

Carbon Fiber Test

Anhydride resin systems do not show much variation

TiO₂ HYBR-synthesized nanofiller selected based on high aspect ratio and large scale production capabilities

Sarwar et al. J. Sol-Gel Sci Tech. (2007) 44, 4. (i)

⁽iv) Sumfleth et al *Polymer* (2008) 49, 5105.

Adler-Abramovich et al. Angewandte Chemie (2010) 49, 1-5. (v) (ii) Sangermano et al. Macromol. Mater. Eng. (2006) 291 517.

Kane et al. J Appl. Cryst. (2009) 42, 925. (iii)

Matrix mechanical properties controlled by intrinsic resin properties: unfunctionalized TiO₂ nanomaterials have little impact

 ζ -potential used as diagnostic tool for detecting/determining changes on surface of nanomaterials

Tailored surface chemistry of TiO_2 nanomaterials demonstrated by ζ -potential measurements.

Summary

Nanomaterials:

- Generated high aspect ratio TiO₂ nanomaterials on the large scale: HYBR route,
- Varied functionalized nanoparticles successfully generated (ζ -potential),

Nanomaterials/Resin:

• 'naked' nanoparticles at low loadings have little effect on solid resin matrix's compression behavior.

Coupons:

- System produced that is in agreement with real world effort (High Quality Model system!).
- Test of glass- and carbon-fiber in variety of resin matrices.
- The coupons generated, indicate carbon-fiber is weak link.

Aims (FY11/FY12) for Improved Flywheel Materials

- Synthesize large quantities of high quality nanomaterials
 - + naked
 - + functionalized
 - + alternative shapes/compositions/mixtures
- nanoceramic materials characterization.
 - + ζ -potential measurements
 - + Dispersibility in resin systems
 - + stability measurement to improve dispersion.

- + SEM of fractured composites
- + interlaminar strength
- + Nanomaterial incorporation changes
- Functionalization of components
 - + carbon fiber
 - organic
 - inorganic
 - + nanomaterials
 - + shape

Dissemination of results has led to many contacts (esp. from last ESS meeting) - not necessarily flywheel researchers

Matt Lazarewicz VP & CTO Beacon Power

Prathib Skandakumaran Innovation Manager Bayer MaterialScience

Michael R. Strommen, Ph.D.
Renewable Energy Storage Program

Andrew Dobrot, Senior Consultant DA2 Consulting

McLaren

Hopper Energy Systems
Steve Dorozenski

Papers:

- (iv) Bell and Boyle "Nanoparticle stabilization mechanisms in epoxy curative fluids: wetting interaction and Van Oss model parameters" (*in prep* for J. Materials Chemistry)
- (iii) Celina *et al.* "Cure reactions of advanced composite resins explored by high temperature micro ATR-IR" 241st ACS National Meeting, Anaheim, CA. Program Area: POLY: Division of Polymer Chemistry Symposium (POLY002) Polymers for Energy Storage and Delivery
- (ii) Boyle, Steele, Velasquez "Synthesis, Characterization, and Comparison of Family of Sodium Aryloxide Solvated Compounds with their Congener Members" (submitted to Inorganic Chemistry)
- (i) Boyle, Steele, Saad "Structural Characterization of a Novel Family of Cesium Aryloxide" (*in Press* Inorganic Chemistry).

: None <u>Presentations:</u> Numerous National Meetings